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PR18 Econometric top-down benchmarking of 
Network Rail 
Context 
1. The 2018 periodic review (PR18) is the process through which we determine what 

Network Rail should deliver in respect of its role in operating, maintaining and 
renewing its network in control period 6 (CP6)1 and how the funding available should 
be best used to achieve this. One of the principal purposes of PR18, as set out in our 
initial consultation document, was to establish a more efficient and better-used 
railway, delivering value for passengers, freight customers and taxpayers in CP6 and 
beyond.  

2. Scrutinising Network Rail’s cost proposals and delivery planning is key to this overall 
objective. The PR18 efficient cost work stream was established to undertake this 
scrutiny with the ultimate aim of setting challenging but achievable efficiency savings 
targets for Network Rail during the next control period (CP6). As part of the efficient 
cost analysis, we are using different approaches including econometric top-down 
benchmarking that we present in this technical paper.  

3. This paper summarises the findings of the two strands of econometric top-down 
benchmarking that we have undertaken in PR18.These are  

 Econometric top-down benchmarking of Network Rail total maintenance and 
renewal costs; and 

  Econometric top-down benchmarking of Network Rail’s maintenance delivery 
units’ maintenance costs. 

4. This analysis’ findings supported our understanding of costs and helped us to identify 
where there might be evidence of performance issues. However, the direct use of 
these findings in making our PR18 decision on Network Rail’s efficiency targets is 
limited, because their robustness is constrained by data quantity and quality. 
Nevertheless, our econometric benchmarking work indicates that there are potential 
inefficiencies within Network Rail. This supports our findings in other areas, notably 
the review of headwinds and efficiencies as described in our PR18 draft 
determination (see the overview here). 

5. In our PR18 draft determination, we described how we envisage to make changes to 
how we regulate Network Rail, with a greater focus on route-level regulation and a 

                                            
1 CP6 will run from 1 April 2019 to 31 March 2024 

http://orr.gov.uk/__data/assets/pdf_file/0010/27757/pr18-draft-determination-overview-june-2018.pdf
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targeted approach to regulating the System Operator (SO) in CP6. We emphasised 
that our CP6 regulation of Network Rail will make greater use of comparison between 
routes. We expect this approach to sharpen the incentives on each route to perform 
and to provide a stimulus to sharing of best practices across Network Rail. 

6. Compared to previous periodic reviews (PR08 and PR13) where we used 
international data to benchmark Network Rail against other similar infrastructure 
managers in Europe, this emphasis on intra-routes comparison in CP6 and beyond 
constitutes an opportunity that we will take to make more use of top-down 
econometric benchmarking.  

7. Although this analysis was constrained by data quality and quantity as it is the first 
time that we conduct econometric benchmarking at such a geographically 
disaggregated level, this analysis constitutes the foundation for our future intra-
Network Rail econometric benchmarking. 

Purpose and structure 
8. This paper summarises the findings of the two technical reports of the econometric 

top-down benchmarking work that we have undertaken as part of PR18 efficient cost 
analysis. These two technical reports constitute one element of the overall evidence 
base for our assessment of Network Rail’s proposed cost and delivery plans. More 
details on the methodology, data and findings can be found in the attached annexes 
A and B. Annex A discusses the econometric top-down benchmarking of Network 
Rail routes while annex B discusses the econometric top-down benchmarking of 
Network Rail’s maintenance delivery units (MDUs).  

9. This summary paper is structured as follows: in addition to the general context 
presented above, section 1 presents the objectives of our PR18 top-down 
econometric benchmarking analysis, section 2 presents the methodologies we used, 
section 3 summarises the findings while section 4 concludes. 

1. Objectives of the analysis 
10. The overall objective of the PR18 efficient cost work stream is to scrutinise 

Network Rail’s cost proposals and delivery planning to ensure that they are stretching 
enough but achievable. To deliver on this objective, one of the approaches we have 
adopted is to use econometric top-down benchmarking to undertake intra-Network 
Rail cost benchmarking.   

11. This has involved using econometrics to benchmark Network Rail’s routes total 
maintenance and renewals costs on the one hand and maintenance delivery units’ 



 

Office of Rail and Road | July 2018 PR18 Econometric top-down benchmarking of Network Rail | 5 

 

maintenance costs (MDUs)2 on the other. Using historical data, this analysis pointed 
to potential inefficiencies in Network Rail’s maintenance and renewals planning and 
delivery processes. This supports our findings in other areas, notably the review of 
efficiencies. This analysis was constrained by data quality and quantity, but it 
established a basis for improvements to data quality and a way forward for 
benchmarking initiatives to inform our ongoing regulatory activities.  

12. In previous periodic reviews (PR08 and PR13) we used international data to 
benchmark Network Rail’s performance against similar infrastructure managers in 
Europe. In comparison, the present intra-Network Rail benchmarking gives us 
insightful information about performance within Network Rail. It offers some technical 
advantages, in particular in the consistency of data definitions. In addition, while 
there is still obvious heterogeneity among Network Rail’s routes and MDUs that our 
analysis has not controlled for, the assumption that they operate in broadly similar 
conditions (which means they are relatively easy to compare) is more acceptable 
than making the same assumption about Network Rail vis a vis its European peers.  

13. We had planned to undertake international benchmarking similar to previous periodic 
reviews using the Lasting Infrastructure Cost Benchmarking (LICB) data to 
benchmark Network Rail against its European peers.  Network Rail is a member of 
the LICB project and had previously provided us with data, but technical and 
administrative barriers meant that it was not able to do so in time for the present 
PR18 analysis. 

14. In carrying out this analysis, we worked closely with Network Rail, who not only 
provided us with the necessary data but also worked constructively with us to 
cleanse it and correct errors and inconsistencies that we identified.  

2. Methodology 
Introduction 

15. In this section, we briefly discuss our approach to the benchmarking analysis.  More 
details are available in the two papers in Appendices A and B.  In this analysis, we 
used statistical techniques that are widely used by regulators (to analyse and 
challenge regulated companies’ efficiency) and in academic research (to undertake 
cost frontier analysis).  We broadly refer to these statistical techniques as 
econometric top-down benchmarking. 

16. The standard approach to econometric top-down benchmarking is to use historical 
data to estimate a cost function.  This is then used to produce efficiency scores for 

                                            
2 MDUs are operating units within routes that are responsible for most of Network Rail’s maintenance activity 
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each comparator, typically relative to the most efficient peer(s).  The econometric 
approach simultaneously takes account of variation in several cost drivers.  This 
means that econometric top-down benchmarking can be used to estimate the impact 
on costs of different variables – like traffic volumes, track length and electrification – 
while at the same time comparing the efficiency of different companies in an industry. 

17. In this section, we set out the methodologies used in the two strands of analysis 
namely: 

 econometric top-down benchmarking of Network Rail routes’ total maintenance 
and renewals costs; and 

 econometric top-down benchmarking of Network Rail MDUs’ maintenance 
costs. 

Econometric top-down benchmarking of Network Rail routes’ total 
maintenance and renewals costs 

18. We used a 5-year panel dataset (covering 2011-12 to 2015-16) to analyse the overall 
maintenance and renewals costs of Network Rail’s routes, using the PR13 definitions 
of routes. This means that we have ten route datasets, rather than the eight that 
would reflect Network Rail’s current structure3.  While our analysis would have 
benefited from using a longer panel dataset, the choice of the period covered was 
dictated by the availability of data as Network Rail only started collecting data at 
route level from 2011-12.  

19. After cleansing the data and handling any errors and/or outliers, we first examined 
trends in the data, which helped us to understand differences in routes’ spending 
behaviours and characteristics.  We then applied widely used econometric methods 
of corrected ordinary least squares (COLS) and stochastic frontier analysis (SFA) to 
estimate the cost function and produce notional efficiency scores for each route.  The 
key independent variables used in our cost function are track length, traffic density 
(i.e. train km divided by track km), and the average number of tracks (i.e. track km 
divided by route km). 

20. Specifically, we estimated a number of variants of the following model equation:  

                                            
3 Our PR13 determination and associated reporting requirements was with respect to ten Routes. Network 

Rail merged East Midlands and LNE, and separately Kent and Sussex, so that for most of CP5 it has had 
eight geographical routes.  However, as Network Rail’s regulatory accounts report on the basis of ten 
Routes, we have undertaken our analysis on that basis to minimise the risk of errors.  In addition, the FNPO 
was not defined as a Route in PR13 and is excluded from our analysis because it does not have 
maintenance or renewals costs. 
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LnCost= f (Ln length of track + Ln traffic density + Ln average number of 
tracks+ Dummy for final year of CP4 + Time) +error term  

21. Where Ln means ‘natural logarithm’. Although we based this model on published 
research and our own previous analysis, data availability also dictated the choice of 
variables.  As earlier mentioned, Network Rail started collecting data at route level in 
2011-12 and, unfortunately, data was not consistently collected on all variables that 
we would wish to include in this analysis (e.g. assets’ age and condition, topography, 
etc.) 

22. Our main model showed that total maintenance and renewal cost (TOTEX) for each 
of the operating routes (i) at time period (t) is a function of track length (TRACKKM), 
traffic density (TRAINTRA), average number of tracks (AVTRACK), a dummy for the 
final year of CP4 (DYR3), a time trend (T) and a random error: 

LnTOTEXit=βo+β1lnTRACKKMit+β2lnTRAINTRAit+β3lnAVTRACKit+β4DYR3+
β5T+eit   

23. Our preferred model combined maintenance and renewals in total cost, but we also 
ran and presented models with maintenance and renewals costs separately (see 
details in Appendices A and B).  Our main reason to prefer the combined approach is 
that it helps to account for the close substitution of some maintenance and renewal 
activities. We conducted various statistical tests and they all concluded that our 
model specification is valid.  We consider that the model is robust from an 
econometric perspective.  It is also robust to changes in modelling approach (i.e. 
COLS vs SFA) and small changes to the underlying data. 

Econometric top-down benchmarking of MDUs’ maintenance costs 

24. Maintenance delivery units (MDUs) are operating units within routes that are 
responsible for the majority of Network Rail’s maintenance activity.  At the time of our 
analysis, there were 37 MDUs.  MDUs accounted for nearly 70% of total network 
maintenance expenditure during the two years covered by this analysis i.e. 2014-15 
and 2015-16. 

25. We started our analysis by examining trends in the available two-year data to 
understand MDUs’ behaviours and characteristics.  

26. As for the route analysis, we then estimated the maintenance cost function and 
produced individual efficiency scores for each MDU using corrected ordinary least 
squares (COLS) methodology.  We mainly based our model’s specification on two 
strands of previous analysis of MDUs:  
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 Network Rail’s own internal analysis (2010, 2011, and 2012) that used 
regression analysis with a wide variety of variables to benchmark 39 MDUs.  
The analysis produced results that, according to Network Rail (2012) “compared 
the best in class with the other delivery units”.  Those results were used to set 
MDUs budgets with efficiency targets for the last three years of CP4.   

 The published paper by Wheat and Smith (2008) which applied ordinary least 
squares (OLS) to a cross section dataset on 53 MDUs in 2005-06 to estimate 
the marginal cost of running more or less traffic on a fixed network in UK.  

27. We conducted a number of statistical model specification tests to check the validity of 
our model.  They all concluded that our model specification is valid. The model is as 
follows: 

Ln(Maintenance Total Cost)= f(Lntrackkm + Lntraffic density_pax + 
Lntraffic density_fr + Lnwage + Electrified density+  Speed_ 40-75 
density+ Ln average  tracks+ Criticality_1 density) +Random error 

28. Where: 

 Ln means ‘natural logarithm’; 

 track km is the length of the track;   

 traffic density_pax means passenger train km divided by track km; 

 traffic density_fr  means  freight train km divided by track km; 

 average track stands for track km divided by route km; 

 wage stands for average real weekly earnings; 

 electrified density is the proportion of track that is electrified; 

 speed_ 40-75 density is the proportion of track with speed between 40-75 
miles per hour; and 

 Criticality_1 density is the proportion of track in criticality band 14.  

29. Given the small size of the two datasets and our inability to obtain data on some 
theoretically important cost drivers (such as assets’ condition / age, topography, etc.), 
we based our conclusions on our results from the simpler but widely used COLS 

                                            
4 Network Rail defines Route criticality as a “measure of the consequence of the infrastructure failing to 

perform its intended function, based on the historic cost of train delay per incident caused by the track 
asset”.  Using this measure, each strategic route section (SRS) of the network has been assigned a route 
criticality band from 1 to 5.The lower the number of the criticality band, the more a delay is likely to cost 
should infrastructure fail.  The classification of each SRS into criticality bands is used in the development of 
Network Rail’s asset policy as a first step to matching the timing and type of asset interventions.  



 

Office of Rail and Road | July 2018 PR18 Econometric top-down benchmarking of Network Rail | 9 

 

methodology.  In our view, COLS is the most appropriate methodology given the size 
and the quality of the data at our disposal.  

3. Findings 
30. Table 1 below summarises the modelled notional efficiency scores for each route 

while Table 2 summarises modelled notional efficiency scores for each MDU. We 
describe these as notional efficiency scores because we recognise we are not yet 
sufficiently confident in the modelling approaches to conclude that the differences 
represent bona fide differences in efficiency as opposed to structural differences 
between routes, which, because we lack data on them, the models are unable to 
distinguish from inefficiency. 

31. It is also important to understand what numbers in those tables show and how they 
compare to the efficiency numbers we talk about in our assessment of Network Rail’s 
costs and income, as part of our draft determination. In particular, it is useful to 
distinguish between two baselines against which efficiency can be measured. First, 
there is the level of cost that a fully efficient company would incur, given current 
technology, when delivering the outcomes required for control period 6 (CP6). This is 
often referred to as ‘frontier efficiency’, and is a largely theoretical concept. Second, 
there is the level of cost that we consider Network Rail – given its current 
performance and current technology – can reasonably be expected to deliver. In the 
context of a public sector organisation, where it is particularly important to set 
challenging but ultimately realistic efficiency targets (not least to provide effective 
reputational incentives), it is the second of these that we are focusing on.  

32. Reflecting this, our draft determination focuses on the question of what level of 
efficiency challenge we think it is reasonable to set Network Rail’s management, 
given where the company is in terms of its ongoing transformation. 

33. However, the econometric analysis we have undertaken produces efficiency metrics 
that compare an estimate of current notional route efficiency to a modelled estimation 
of how efficient a route could be, given the data available. This is roughly analogous 
to comparing the efficiency of a route to an estimate of ‘frontier efficiency’. 

34. In addition, given that our conclusions are based on COLS methodology which 
adopts a strong (and perhaps unrealistic) assumption that all the deviation from the 
frontier reflects inefficiency, we made the assumption (as in our PR13 analysis) that 
25% of modelled inefficiency is explained by random noise in the data. We therefore 
applied a 25% uplift to our modelled notional efficiency scores. This practice of 
uplifting COLS modelled efficiency scores is widely used by other regulators. For 
instance, in their 2007-2008 relative efficiency assessment, Ofwat adjusted COLS 
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residuals for water by 10% and for sewage by 20%. For more details about this 
adjustment, see appendix A and B. 

35. Our final modelled notional efficiency scores are presented in Table 1 and Table 2 
below.  

36. Furthermore, our analysis faced some constraints that should be borne in mind when 
considering these results. These include the small size of the dataset; unavailability 
of data for potentially important cost drivers; and (in our route analysis) our inability to 
fully adjust for the year-on-year fluctuations in renewals expenditure. This means that 
our modelled cost function may not exactly reflect the true cost structure.  
Consequently, our view is that we cannot use these results alone to draw strong 
conclusions about individual route / MDU efficiency levels. However, we consider that 
they are robust enough to be used to sense-check and support results from other 
analyses. 

37. Our preferred model (COLS) produces a wide range of notional efficiency scores for 
both routes and MDUs. It estimates that routes and MDUs are on average 84% as 
notionally efficient as the modelled ‘frontier efficient route’. This notionally means 
that, all other things being equal, an average route/MDU could spend an average of 
16% less of its budget if it were as efficient as the ‘frontier efficient route’.   

Table 1 - Modelled route notional efficiency scores  
Year Anglia EM Kent LNE LNW Scotland Sussex Wales Wessex Western Average 
2011-12 0.83 0.89 0.84 0.85 0.82 0.84 0.98 0.71 1.00 0.90 0.87 
2012-13 0.87 0.79 0.81 0.82 0.78 0.86 0.81 0.70 0.96 0.70 0.81 
2013-14 0.94 0.91 0.78 0.87 0.77 0.88 0.79 0.81 0.91 0.76 0.84 
2014-15 0.80 0.99 0.72 0.91 0.83 1.00 0.80 0.87 0.79 0.76 0.85 

2015-16 0.88 0.95 0.74 0.85 0.76 1.00 0.80 0.86 0.86 0.77 0.85 
Average 0.86 0.91 0.78 0.86 0.79 0.92 0.84 0.79 0.90 0.78 0.84 

Table 2 - Modelled individual MDUs notional efficiency scores  
Route MDU 2014-15 2015-16 Average 

Anglia 

Ipswich 0.72 0.78 0.75 

Romford 0.78 0.85 0.82 

Tottenham 0.84 0.93 0.89 

EM 
Bedford 0.81 0.85 0.83 

Derby 0.87 0.92 0.89 

LNE 

Doncaster 0.97 0.90 0.93 

Leeds 1.00 0.93 0.96 

Newcastle 0.81 0.71 0.76 

Peterborough 0.96 0.96 0.96 
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Route MDU 2014-15 2015-16 Average 

Sheffield 0.90 0.89 0.90 

York 0.95 0.87 0.91 

LNW 

Bletchley 0.78 0.81 0.79 

Euston 0.69 0.78 0.73 

Lancs & Cumbria 0.63 0.63 0.63 

Liverpool 0.92 0.89 0.90 

Manchester 0.72 0.75 0.73 

Saltley 0.90 0.88 0.89 

Sandwell & Dudley 0.82 0.77 0.79 

Stafford 0.99 0.93 0.96 

Scotland 

Edinburgh 0.93 0.88 0.90 

Glasgow 0.97 0.95 0.96 

Motherwell 0.87 0.87 0.87 

Perth 0.97 0.97 0.97 

Sussex 
Croydon 0.78 0.79 0.78 

Brighton 0.81 0.80 0.80 

Kent 

Ashford 0.72 0.78 0.75 

London Bridge 0.81 0.84 0.82 

Orpington 0.89 0.92 0.90 

Wales 
Cardiff 0.63 0.63 0.63 

Shrewsbury 0.90 0.85 0.87 

Wessex 

Clapham 0.81 0.83 0.82 

Eastleigh 0.71 0.72 0.72 

Woking 0.78 0.90 0.84 

Western 

Bristol 0.79 0.81 0.80 

Plymouth 0.81 0.83 0.82 

Reading 0.81 0.79 0.80 

Swindon 0.85 0.78 0.81 

  Average 0.83 0.84 0.84 
 

4. Conclusions – Econometric top-down Benchmarking 
38. Compared with our international approach in previous periodic reviews, our PR18 

econometric top-down benchmarking has been entirely intra-Network Rail.  Being 
able to benchmark Network Rail’s routes and MDUs is an important step in achieving 
our policy objective of moving towards a more route-focused regulation. 



 

Office of Rail and Road | July 2018 PR18 Econometric top-down benchmarking of Network Rail | 12 

 

39. As this was the first time that we undertook benchmarking at such a disaggregated 
intra-Network Rail level, we have faced some data quantity and quality constraints.  
Nevertheless, this analysis forms an important part of our approach to route-level 
regulation as it gives us a broad understanding of how routes and MDUs have been 
performing.  Moreover, it forms a good basis for future analysis as it identifies 
technical issues (including data quality) that we need to tackle to ensure our future 
analysis is more robust and reliable.  

40. However, recognising the constraints on this analysis, we have decided that we 
cannot make firm decisions on Network Rail’s CP6 efficiency targets based solely on 
these results.  Our work is strongly indicative that inefficiencies exist within Network 
Rail but the current constraints on data limit our ability to quantify these with sufficient 
accuracy.  We will use the results to support and sense-check findings from other 
analyses including bottom-up approaches and more detailed reviews of headwinds 
and efficiencies.  In CP6, we will work with Network Rail to ensure that the data 
necessary for top-down benchmarking is consistently collected across a wide set of 
variables. 

Appendices 
The appendices contain technical papers which describe ORR’s work to benchmark 
Network Rail’s infrastructure maintenance and renewals costs.  These are: 

 Appendix A – Benchmarking of Network Rail’s routes; and 

 Appendix B – Benchmarking of Maintenance Delivery Units. 
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Appendix A - Benchmarking of Routes 
Econometric top-down benchmarking of Network Rail’s 
routes’ costs 

Abstract 
As part of the 2018 Periodic Review (PR18), ORR is assessing Network Rail’s efficiency 
using various approaches. This will enable ORR to set Network Rail’s challenging but 
achievable efficiency targets for Control Period 6 (CP6). In this paper, we discuss ORR’s 
econometric top-down benchmarking of route-level maintenance and renewals costs.  

Using a 5-year panel dataset (2011-12 to 2015-16), we first present the trends in the data 
to help understand differences in routes’ characteristics and spending behaviours. We 
then use econometric methods of Corrected Ordinary Least Squares (COLS) and 
Stochastic Frontier Analysis (SFA) to estimate the cost function and benchmark routes’ 
notional cost efficiency. Our preferred COLS model suggests that routes with high traffic 
have a cost advantage; that track length is positively correlated with cost; and that 
networks with multiple, rather than single track are cheaper to run. Finally, the analysis 
produces a range of notional cost efficiency scores, relative to the (theoretical) route 
efficiency frontier.  

Our model estimates that routes are on average 84% as efficient as the modelled ‘frontier 
efficient route’.  Our analysis was constrained by the size of the dataset; a lack of data for 
some important cost drivers; and year-on-year fluctuations in renewals expenditure that we 
could not fully control for. Therefore, although our model is robust from an econometric 
perspective, our results cannot be used to set routes’ efficiency targets for PR18. 
However, they can be used to sense-check other analyses which inform that decision, and 
support the general conclusion that there are significant inefficiencies remaining in 
Network Rail’s SBP forecasts for CP6. 

1. Introduction 
1. This paper discusses the routes data, the methodology and the findings of our PR18 

econometric top-down benchmarking of Network Rail’s routes’ total maintenance and 
renewals costs for the period 2011-12 to 2015-16.   

2. Econometric top-down benchmarking is a common tool used by regulators (e.g. 
Ofgem, Ofwat, etc.) in price reviews to inform and hence challenge regulated 
companies’ efficiency assumptions.  
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Use of econometric benchmarking in PR08 and PR13 

3. Since the 2008 periodic review  (PR08), we have used top-down benchmarking 
alongside other efficiency benchmarking methods to assess the scope for Network 
Rail’s cost efficiency improvement, and compared this with other evidence to inform 
our decision regarding the funding that Network Rail required to deliver the outputs 
for the next control. 

4. In our PR08 and PR13 econometric top-down benchmarking, we used an 
econometric technique known as (cost) frontier analysis to first estimate the cost 
function and then analyse Network Rail’s efficiency. The estimation of the cost 
function using econometrics has involved looking at how variations in cost drivers 
(such as network length, train density, average number of tracks, etc.) are correlated 
with variations in maintenance and renewals costs. 

5. Econometric top-down benchmarking provides the basis to establish a comparator’s 
efficiency relative to its peers.  This is done by providing an estimate of the extent to 
which the comparator (in our case routes) is above the minimum cost (i.e. cost of the 
most efficient firm in the industry) of providing the current level of service. 

6. However, it often suffers from a major technical challenge of requiring data of 
sufficiently high quantity and quality to produce reliable estimates. This also arises 
from the fact that there is trade-off between the number of cost drivers that can be 
included in a top-down benchmarking model and the capacity of that model to 
produce precise estimates. Moreover, while top-down benchmarking may help 
identify areas for further investigation and challenge, it does not allow for a qualitative 
understanding of the reasons behind efficiency differences between comparators. 

7. In PR08, we placed considerable weight on the results of international econometric 
top-down benchmarking which used a panel data to compare Network rail’s efficiency 
with that of similar infrastructure managers in Europe. The results of the econometric 
benchmarking were extensively compared to (and, in general, strongly supported by) 
the results from other (non-econometric) bottom-up benchmarking. We used these 
top-down benchmarking results to set Network Rail’s efficiency targets. 

8. For PR13, we improved our econometric methodology by working on technical issues 
that Network Rail  raised in PR08 (around the quality of data, the usefulness of 
international rather than single country data, and the stability of the estimated 
econometric models). Using a carefully cleansed panel data, we considered different 
estimation techniques (21 in total) including stochastic frontier analysis (SFA). 
However, in PR13 we decided at an early stage to use bottom-up benchmarking as 
the basis of our evidence for determining maintenance and renewals efficiency. We 
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used international benchmarking as a sense check to give us greater confidence in 
our detailed bottom-up benchmarking analysis conclusions. 

Use of econometric benchmarking in PR18 

9. From 2011, Network Rail devolved responsibility for day-to-day operation and 
management of the railway to its ten geographic routes (Anglia, East Midlands, Kent, 
LNE, LNW, Scotland, Sussex, Wales, Wessex, and Western). These routes were 
reduced to eight after merger between LNE and East Midland on the one hand, and 
Kent and Sussex on the other.  

10. We view these developments as an opportunity to extend our analysis in PR18 and 
beyond by conducting an intra-Network Rail benchmarking. One aspect of this intra-
Network Rail benchmarking consists of benchmarking routes in terms of their cost 
efficiency and this is the subject of this paper. Compared to international top-down 
benchmarking, intra- Network Rail top-down benchmarking has some advantages, in 
particular in the consistency of data definitions. In addition, Network Rail’s routes 
operate in broadly similar conditions which means they are relatively easy to 
compare. 

11. As this is the first time that we conduct top-down benchmarking at route level, this 
PR18 analysis serves as a foundation for route level top-down benchmarking 
analysis in future periodic reviews. While it gives a broad idea on how routes have 
been performing, it also highlights the issues that we need to tackle in order to 
improve the reliability of our future analysis. 

12. In this paper, we used a mathematical double log (Cobb Douglas) equation to model 
the cost function (our main dependent variable being total expenditure i.e. 
maintenance + renewal costs). We applied econometric techniques of Corrected 
Ordinary Least Squares (COLS) and Stochastic Frontier Analysis (SFA) models to a 
5-year balanced panel dataset i.e. covering the period from 2011-12 to 2015-16 for 
Network Rail’s ten routes.  We conducted the analysis on ten routes rather than eight 
in order to be consistent with the regulatory accounts publication. However, our 
future analysis could be undertaken on the eight operating routes. Moreover, while 
our analysis could have benefited from having a longer panel, we only used a 5-year 
panel as Network Rail started collecting data at route level from 2011-12. 

13. Before conducting the econometric analysis, we ensured that our data was 
consistent by conducting various checks including identifying potential outliers, 
missing or inconsistent data, adjustment for year-on-year fluctuations in renewal 
expenditure, adjusting the cost data for inflation, etc. Any inconsistency was handled 
with the help of Network Rail. 
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14. Given the small size of our dataset as well as difficulties in getting reliable data on 
some potential cost drivers, we preferred to base our final analysis on the results 
from the simplest but most widely used model specification i.e. the COLS model. We 
conducted various robustness and model specification checks to ensure reliability of 
our results. 

15. This paper is structured as follows: After this introduction, section 2 discusses the 
general concept of analysing firm’s performance, section 3 presents the data used in 
this analysis as well as different data mining approaches we undertook. Section 4 
discusses our cost function, the model specification and the methodology we 
adopted in this analysis. Section 5 presents our results while section 6 concludes. 

2. Firm’s performance analysis: productivity, cost 
frontier and efficiency  
16. An increasing number of regulators (including the UK’s Ofgem and Ofwat) use top-

down benchmarking to inform their understanding of regulated firms’ efficiency. 
Econometric top-down benchmarking can help to determine whether the regulated 
firm is producing its outputs in the most cost efficient way (i.e. at minimum cost) and 
to quantify the gap between the actual and the minimum cost. 

17. This section introduces the concepts widely used in analysing firms’ performance 
including productivity and efficiency. The following graph represents a firm producing 
output Y using input X: 

Figure 1 Efficiency and productivity 
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18. In Figure 1 above, line F represents the maximum level of production where 
resources are optimally combined to produce the output under a given production 
technology. F is called the frontier of the feasible production. Thus, firms B and C 
are said to be technically efficient. Firm A is inefficient because it could either 
produce more output using the same amount of inputs ( attaining point B) or produce 
the same quantity of output using fewer inputs (by producing at point C). The 
distance AB represents the output loss resulting from technical inefficiency. This 
forms the basis from which the output–oriented technical inefficiency is measured. 
Similarly, the distance AC shows the amount by which the firm can reduce the input 
but still produce the same level of output. AC forms the basis from which the input-
oriented technical inefficiency is measured. Therefore, we can understand firm’s 
efficiency as the comparison between its actual production and what it could produce 
if it produced at the frontier.  

19. A firms’ productivity is the ratio of outputs it produces to inputs it uses. This is a 
general measure of firm’s performance. For a firm producing one output using one 
input, productivity would be easy to compute. However if the firm produces multiple 
outputs using several inputs both inputs and outputs must be aggregated in an 
economically sensible manner in order to produce a Total Factor Productivity (TFP) 
that is a ratio of the two scalars. Productivity growth is the difference between 
growth in output and growth in inputs. Given that production is not always on the 
frontier, change in productivity can arise from two scenarios: i) movements towards 
or away from the frontier due to changes in technical efficiency; and ii) shifts in the 
frontier due to the effect of technological innovations or progress.  

20. In Figure 1 above, firm C’s productivity (Y1/X1) is less than the productivity of firm B 
(Y2/X2). This is because the firm producing at point C is not fully exploiting the 
economies of scale (as shown by the high slope in the middle of curve F).  As the two 
firms operate at the frontier, they are both considered as technically efficient. 
However, firm B is said to be more productive as it operates with maximum 
productivity and maximum efficiency. 

21. The economic concept of duality implies that we can use the properties of the 
production function to infer about properties of the cost function. This is because 
when we say that a firm is maximizing its profit it implies that the firm is therefore 
minimizing its costs. Thus, we can say that curve F in Figure 1 above also represents 
the minimum cost at which the maximum output can be produced by combining the 
inputs given their prices and the existing technology. Therefore, F becomes what we 
refer to as cost frontier. The minimum cost frontier represents the minimum cost 
relationship between cost (of an activity such as maintenance or renewal in a route) 
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and the drivers of cost, such as length of track to be maintained (the output), the 
quality of that output as well as relative prices of inputs used such as labour.  

22. For a given level of output, there are two different sources of extra costs that a firm 
may have to reduce in order to minimize its costs: 

(i) If there is technical inefficiency in the firm’s production process, the firm 
may work to improve its efficiency by producing the same level of output 
using fewer inputs;  

(ii) If the same level of output can be produced by a better combination of 
inputs, then the firm could improve its (allocative) efficiency by choosing 
the cheapest combination of inputs (this depends not only on the 
technology but also on the relative price ratios of inputs).  

23. Technical efficiency shows the proportion of the actual cost which is needed if the 
firm adopted the best practice (all other things equal). In Figure 2 below, F is the cost 
frontier. Firms C, D and E are efficient as they produce at minimum cost while firms B 
and A are inefficient as they produce above the frontier. As earlier discussed, by 
adopting best practice, firms A and B can reduce costs without sacrificing output. 

24. Technical efficiency is calculated as the ratio between minimum cost and actual cost. 
We call that number the efficiency score and it helps us to measure the degree to 
which firms are fully efficient. This is a number between 0 and 1. While 1 indicates 
that the firm is fully efficient, anything less than 1 indicates that the firm (in our case a 
route) could continue to maintain and renew a given amount of assets with the same 
quality but at lower cost. For instance, an efficiency score of 0.7 (or 70%) indicates 
that a route could potentially reduce its current cost by 30% and still maintain and 
renew the same amount of assets with the same level of quality. 
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Figure 2 Cost frontier and efficiency 
  

 

3. The route data 
25. Before conducting our empirical analysis, it is important to understand the kind of 

data that is available to us. This section briefly discusses the sources of the data as 
well as the types of data testing approaches that we adopted to get the final dataset. 
We then use visual presentation to discuss trends in our data and try to understand 
their meaning vis à vis our current understanding of routes’ operations.  

26. As earlier mentioned, we have used a balanced 5-year panel data i.e. from 2011-12 
to 2015-16 for the ten routes that existed in that period (Anglia, East Midlands, Kent, 
LNE, LNW, Scotland, Sussex, Wales, Wessex, and Western).  We obtained all the 
data from Network Rail who compiled it from different sources including Network 
Rail’s regulatory accounts, its asset management services, the annual returns, 
Network Rail’s track access billing team and Network Rail’s finance department.  

27. We undertook a comprehensive review of the data to ensure its quality and 
consistency. The three main methods we used to identify outliers and other 
inconsistencies in the data were:  

(i) The percentage change year-on-year; 

(ii) The visual inspection of trends using charts; and 

(iii) The number of standard deviations from the mean whereby points greater 
than two standard deviations from the mean were considered outliers. 

Cost efficiency (TE) = 
Minimum cost/Actual 
cost: TEA=OA’/OA 

0<=TE<=1 
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28. We supplemented these techniques with our understanding of expected behaviours. 
We used GDP deflator to adjust all the expenditure data for inflation. 

29. Whenever we identified an outlier or an inconsistent and/or implausible data point, 
we shared our concern with Network Rail’s colleagues who either provided an 
explanation for the inconsistency or corrected the error. This allowed us to correct all 
inconsistencies and challenge all outliers. This gave us a balanced 5-year panel 
dataset.  

3.1 Visual inspection of trends in the data 
30. As this was the first time that we undertake the analysis at route level, it was crucial 

to start by understanding how different the routes are both in their characteristics and 
their spending behaviours. This section presents part of the visual inspection that we 
conducted on the main variables. The years in the charts are presented from 1 to 5 
i.e. from 2011-12 to 2015-16 and costs are based on 2015-16 prices. As earlier 
mentioned, we obtained all the data from Network Rail. 

31. Network Rail compiled the data on Total renewal cost from its regulatory accounts. 
Renewals refer to capital expenditure aimed at replacing assets like-for-like following 
the end of their lifetimes. Renewals expenditure is inherently lumpy and its year-on-
year variation is expected to be high5. Figure 3 below shows that: LNW and LNE 
were always the highest spenders on renewals; EM, Kent, Sussex, Wales, Scotland 
always spent below the average; on average, all routes (except EM) spent more in 
2013-14 (end of CP4); annual expenditure varies a lot for each route as expected. 
For the 5 years coved by our sample, renewals expenditure was 73% of total 
expenditure on maintenance and renewals. We also observed that on average, the 
amount spent on track renewal was 29% of total renewals expenditure.  

                                            
5 Later in this section, we will discuss how we handled this lumpiness by conducting steady state adjustment. 
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Figure 3 Total renewals cost 

 

32. We also examined the data on track renewal volumes that Network Rail obtained 
from its annual returns dataset.  We observe that in the last two years, nearly all the 
routes increased the volumes of track they renewed; LNE and LNW renewed more 
than other routes while Sussex and Kent renewed the least. As expected, the amount 
of renewal volumes fluctuates year-on-year.  

Figure 4 Track renewal volumes 
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33. Then we examined the track renewal spend per track km renewed. Our data 
reveals that on average in 2013-14 routes spent more money per kilometre of track 
renewed (about £1.4m/track km) than in any other year. This being the final year of 
CP4, we suspect this was a reflection of the attempts made by all the routes to meet 
the CP4 exit targets.  On the other hand, for the last 5 years an average route spent 
about £1.03M per kilometre of track renewed with Sussex always spending above 
the average. We also observe that Western expenditure increased by 198% between 
2011-12 and 2012-13. Network Rail explained this by the fact that Western was the 
only route using high output equipment during that period. Finally, Wales’ 
expenditure declined by 41% between 2011-12 and 2012-13 and by 54% between 
2013-14 and 2014-15.  

Figure 5 Track renewal spend per track km renewed 

 

34. Network Rail compiled the data on maintenance expenditure from its regulatory 
accounts. Maintenance activity refers to processes that aim at optimising assets’ 
lifetimes and at sustaining the condition and the capability of an existing 
infrastructure. We calculated track maintenance expenditure to be £37,000 per year 
per km of track. We also observed that in the last two years maintenance expenditure 
per track km increased in almost all the routes. Anglia, Kent, LNW, Sussex and 
Wessex always spent above the average while during the years covered by this 
analysis Sussex always spent more than other routes (except Anglia in 2013-14). 
Scotland, Wales, LNE and EM always spent below the average. 
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Figure 6 Total maintenance expenditure per track km 

 

35. We then turned to examining traffic density data that Network Rail obtained from its 
Track Access Billing System. We started by examining passenger train km. By 
comparing data for 2011-12 and 2015-16, we observe that passenger train km has 
declined in three routes (EM, Kent and Western). It increased by more than 7% in 
Scotland. On average, passenger train km increased by 1.7% between 2011-12 and 
2015-16. 

Figure 7 Passenger train km 
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decreased by about 15% on average. This reflects the recent declines in volumes of 
some commodities transported by rail such as coal.   

Figure 8 Freight train km 

 

37. We then examined the data on total train km (passenger train km +freight train km) 
per track km i.e. total traffic density. The data shows that traffic density is almost 
constant over time in each route, with variations within each route always below 7%. 
However, levels of traffic density are very different when we compare routes. In the 
last 5 years, the average traffic density was 19,400 train km per track km. Sussex 
was by far the most densely used route while Wales and Scotland were the least 
densely used. Traffic density in the following five routes has been consistently above 
the average for the last 5 years: Anglia, Kent, Sussex, Wessex and, to a lesser 
extent, LNW. 

Figure 9 Total train km per track km 
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38. Finally, we looked at the data on length of track that Network Rail obtained from its 
asset management services. As expected, the length of track is almost constant in all 
routes. In 2014-15, EM‘s track length increased by 28% but costs and traffic did not 
follow the same trajectory. We asked Network Rail to explain this. Network Rail 
argued that this is because the Lincoln area, which was added from LNE, is low cost 
and low traffic. After our own investigation, we were satisfied by this explanation. The 
data shows that LNW, LNE, Scotland and Western are the longest tracks while 
Sussex is the shortest track. Our data shows that EM has the highest number of 
tracks (i.e. track km per route km) on average (2.5).Average electrification is 47% 
(zero in Wales, 3% in Western and more than 90% in Kent and Sussex). 

Figure 10 Track size 
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(i) Assets are originally installed in lumpy investment projects and the 
renewal of these assets tends to be concentrated over a time period 
relating to typical asset lives. 

(ii) Backlogs (or, in principle overinvestment) may result from poor policy 
making but also from situations like funding constraints, weather 
conditions etc. 

(iii) Due to many different asset types and their degradation profiles, there will 
be natural peaks and troughs in renewal. 

(iv) It may be cheaper to renew assets early if other assets nearby are being 
renewed at the same time (for example to spread access costs and 
mobilisation costs). 

42. Steady state adjustment adjusts expenditure to reflect actual volumes relative to 
steady state volumes regardless of the reason for the difference.  

43. However, there are issues introduced by such an adjustment. In particular, it may 
have unintended side effects, as its failure to account for reasons for fluctuations 
means that while it helps in dealing with lumpiness of renewals it may lead to the 
failure of econometric analysis in picking up the full extent of scope inefficiency. 
Therefore, in our results we present both steady state adjusted and non-steady state 
adjusted results. This does not affect our conclusions, as results are comparable. 

44. Our PR18 steady state adjustment is similar to the one in PR136. In PR13, we 
conducted steady state adjustment on track renewal expenditure only. In PR18, we 
intended to extend the adjustment to other types of assets including signalling, civils, 
electrification, etc., but we could not do so because of lack of reliable data. This lack 
of reliable data led us to make the very strong (and perhaps unrealistic) assumption 
that Network rail was renewing at steady state levels in all other assets. 

45. In September 2011, Network Rail submitted its initial industry plan (IIP) to ORR 
where it committed to a policy target of renewing 2.3% of its track every year until the 
end of CP4. In our PR13 econometric benchmarking, we used this rate (i.e. 2.3%) as 
our steady state rate and we wanted to adopt the same approach in PR18. However, 
in CP5, Network Rail changed this renewal volumes target to 2.1%. With respect to 
adjusting the expenditure data, for data on CP4 expenditure we used the CP4 
renewals target, and for data on CP5 expenditure we used the CP5 renewals target. 

                                            
6 For more details  and examples, see PR13 Efficiency Benchmarking of Network Rail using LICB 
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46. In our sensitivity analysis we also tested against only using the 2.3% rate (as in 
PR13) and the results did not change significantly.  

47. We divided total renewal cost into two categories namely track and non-track costs.  
Then we calculated the: 

 Steady state (SS) volume of track renewal (km) as steady state rate of 
renewal x total track length.  

 We then calculated the scaling factor as steady state volume of track renewal 
(km) / actual volume of track renewal (km). 

 A volume scaling factor of greater than 1 means that the route was renewing  
below steady state while a scaling factor smaller than 1 means that the route 
was renewing above steady state.  

 Then we calculated the steady state adjusted track renewal cost i.e. scaling 
factor x actual track renewal cost.  

 Finally, the total steady state adjusted renewals cost was calculated by 
summing up steady state adjusted track renewals cost + actual non-track 
renewal cost.  

48. By applying the same steady state adjustment rate on all the routes, this approach 
does not take into consideration the effect of traffic on renewal activities. For 
instance, one would expect a route with higher traffic density to spend more on 
renewals and maintenance as more traffic causes higher wear and tear. However, 
this can also be said about different types of routes in terms of access, topography 
and other forms of complexity. However, we assume that the rate that is set as a 
target by Network Rail refers to an average route and this is understood to reflect the 
behaviour of an average route. To cater for all the problems associated with steady 
state adjustment, we present results from models with and without the adjustment. 
The results from both models are broadly comparable and do not affect our 
conclusions. 

4. The cost function, our model specification and 
methodology 
49. This section explains our choice of the functional form and discusses various model 

specifications we have adopted in this analysis. It briefly explains the difference 
between our different stochastic frontier analysis models and discusses our preferred 
corrected ordinary least squares (COLS) specification. 
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4.1. Functional form 
50. In cost function analysis, three main types of functional forms have been used in the 

literature: linear, double log (i.e. Cobb Douglas) and trans log forms. As in PR08 and 
PR13, our route data analysis uses a Cobb-Douglas function. We chose this 
functional form for the following reasons: 

(i) It is simple and fits the data very well. 

(ii) Its estimates can be interpreted as elasticities (i.e. the coefficients 
represent proportionate changes in cost resulting from proportionate 
changes in each explanatory variable). These are unit free and can be 
compared to predictions from economic theory, engineering experience, 
and estimates from other studies. 

(iii) The linear model is less robust to heteroscedasticity, and the trans log 
model has too many explanatory variables for it to be estimable using this 
small dataset.  

4.2. Model specification 
51. Having selected an appropriate functional form, the next step is to decide the 

dependent variables (cost measures) and independent variables (cost drivers) to 
include in the model. 

4.2.1 Dependent variable  

52. As earlier mentioned, we have used a balanced 5-year panel data i.e. from 2011-12 
to 2015-16 for ten routes. Similar to our PR13 approach, our main dependent 
variable is the total cost (TOTEX) which is the summation of maintenance and 
renewal costs. Network Rail’s financial planning is centred on TOTEX view. 
Therefore, using TOTEX as our main measure of cost offers the advantage of 
reflecting the approach that Network Rail takes in setting its targets.  

53. Moreover, there may be some trade-offs between maintenance and renewal activities 
which can also be taken care of by aggregating them in one measure. Indeed, both 
activities are of different nature with maintenance activity being more cyclical and 
predictable than renewal activity. Maintenance activity refers to processes that aim at 
keeping a certain level of infrastructure quality or keep existing assets in working 
condition. Renewals expenditure on the other hand refers to activities that replace 
assets like-for-like following the end of their lives. However, to reflect the trend in the 
literature, we also run models with maintenance and renewals as dependent 
variables separately.  
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4.2.2 Explanatory variables 

54. In econometrics, there is a trade-off between the number of explanatory variables 
used in the model, and the model’s ability to produce precise estimates. This means 
that including too many explanatory variables in a model may reduce its ability to 
distinguish their effects. Therefore, we chose our explanatory variables based on the 
existing literature as well as on the availability of data. Indeed, we were not able to 
control for some variables that the literature has usually considered as important 
drivers of costs (such as route complexity, asset condition, etc.), as the data was not 
available. Similarly, we did not control for input prices such as labour, material and 
machinery costs mainly because we did not have data disaggregated to maintenance 
and renewal level. Although this may not have a significant impact as we can assume 
that routes faced a comparable level of input prices, this assumption may lead to the 
model not accounting for some individual routes’ inefficiencies such as those in their 
procurement processes.  

55. Although we tested many cost drivers, the following table summarises the 
explanatory variables that we retained and used in our model. It also presents the 
intuition behind their relationship with our dependent variable i.e. total cost.  

Table 3: List of our independent variables 
Variable name 
 

Expected 
relationship 

The intuition behind the relationship 
 

Track km i.e. network size 
(Trackkm) 

positive 

The longer the track in a route the greater is the volume 
of track to be renewed and maintained. Greater 
volumes of work imply greater costs all else being 
equal. 

Traffic density (train 
km/track km i.e. both 
passenger and freight train 
km together, Traintra). We 
also control for passenger 
train km/track km (passdens) 
and freight train km/ track km 
(freidens) as separate cost 
drivers 

positive 

All else equal, we expect an additional train on a fixed 
network to generate additional wear and tear which 
calls for additional maintenance and renewal activity 
and thereby additional costs.  

Average number of tracks 
i.e. track kilometres divided 
by route kilometres (Avtrack) 

negative 
All else constant, operating routes with more tracks 
eases traffic flow and, therefore reduces pressures on 
maintenance and renewals costs. 

End of CP4 i.e. year 3 dummy 
(DYR3) 

positive 

In our previous visual presentation of the data, we 
noted that during the final year of CP4 all the routes 
spend more on maintenance and renewals. We argue 
that the end of the control period could be a cost driver 
as routes rush to meet the CP exit targets.  

Time trend positive 
This captures all the changes that happen over time 
including change in input prices, technical change, etc. 
The effect of input prices (and inflation) is expected to 
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Variable name 
 

Expected 
relationship 

The intuition behind the relationship 
 

be positive while the effect of technical progress is 
expected to be negative, all else constant. Given that 
we only have a 5-year panel where technical change is 
not expected to be massive, we expect a positive 
relationship. We assume a linear trend. 

 
4.2.3. Descriptive statistics 

56. Table 4 below presents some statistics to describe our main variables. For the five 
years under analysis, the data shows that an average route spent £396m on 
maintenance and renewals (TOTEX) activities.  The route that spent the least spent 
£160m (East Midland in 2014-15) while the one that spent the most spent £1,131m 
(LNW in 2013-14). The data shows that on average, track size is 3,111km with the 
smallest route having 1,124 km (Sussex in 2012-13) while the longest had 6,697 km 
(LNW in 2014-15). Total train density has the mean of 19,426 trains per track km with 
a minimum of 10,493 train km per track km (Wales in 2014-15) and a maximum of 
32,601 train km  per track km (Sussex in 2011-12). As expected, passenger traffic 
density (18,069 train km per track km) is on average, greater than freight traffic 
density (1,357 train per track km). An average route has two tracks. 

Table 4 Summary of variables 
Variable Mean Std. Dev. Min Max 

Totex 395.87 218.63 160.09 1131.15 

Maintenance 109.10 65.49 48.50 310.00 

Renewal 286.77 160.86 95.99 883.84 

Trackkm 3111.72 1725.28 1124.00 6697.00 

Traintra 19425.60 5816.59 10493.21 32601.19 

Passdens 18068.58 6030.88 9365.33 32112.68 

Freidens 1357.02 574.82 313.16 2258.18 

Avtrack 2.02 0.27 1.57 2.71 

57. In econometrics, it is important to check the correlation between variables. When 
correlation between regressors is high, then there is risk of multicollinearity (i.e. one 
regressor can be linearly predicted from the others with a substantial degree of 
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accuracy). In the presence of multicollinearity, although OLS estimates are BLUE7 it 
is difficult to conclude on the significance of variables because confidence intervals 
for coefficients tend to be very wide while t-statistics tend to be very small, so that 
coefficients will have to be very large in order to be statistically significant. Looking at 
the correlation between our dependent variables in Table 5 below, we have little 
reason to worry about multicollinearity. The following table shows the correlation 
between our main variables. 

Table 5 Correlation between variables 
Variable Totex Maint Ren Trackkm Traintra Passdens Freidens Avtrack 

Totex 1        

Maintenance 0.915 1       

Renewal 0.987 0.837 1      

Trackkm 0.907 0.869 0.879 1     

Traintra -0.119 -0.053 -0.140 -0.395 1    

Passdens -0.168 -0.106 -0.185 -0.439 0.996 1   

Freidens 0.555 0.570 0.521 0.608 -0.330 -0.414 1  

Avtrack 0.019 0.100 -0.015 -0.117 0.430 0.388 0.278 1 

 
4.3. Methodology  

58. In this section, we present the techniques that we used to analyse the routes’ cost 
efficiency. In the literature, two types of analysis have been used to analyse 
efficiency. These are parametric and non-parametric methods. Parametric 
methods of efficiency analysis utilize econometric techniques. They rely on a 
specified functional form of production or cost functions. They typically include 
regression and Stochastic Frontier Analysis (SFA). Non-parametric methods use 
mathematical programming techniques and do not require specification of a cost 
function. They include Data Envelopment Analysis (DEA). DEA is a linear 
programming-based method whereby the efficiency of a firm is measured by first 
estimating the minimum cost necessary to secure its output levels when it is 
compared with similar firms. Then the efficiency of the firm and its scope for 
efficiency savings are obtained by calculating the ratio of the estimated minimum cost 
to the observed cost.  

                                            
7 Best Linear Unbiased Estimator 
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59. Similarly, unit cost analysis may be used to benchmark a firm’s performance by 
calculating the average cost per unit of output on the basis that the average is also 
the ‘expected’ level of any random variable. However, in reality different companies 
operate in different conditions so that one would expect their average costs to differ 
even if they were equally efficient (for instance, a large company may have lower unit 
costs than a smaller company). It is therefore essential to allow for differences in 
operating conditions when estimating the ‘expected’ levels of costs for benchmarking 
purposes. Regression analysis and stochastic frontier analysis help to separate the 
impact of these conditions on costs and isolate the effect of cost efficiency. They 
have the advantage of accommodating multiple cost drivers and can test their 
respective relevance in explaining the variations in costs.   

60. As one of the main objectives of our analysis was to estimate the parameters that 
describe the relationship between the costs and their identified drivers, we chose to 
apply parametric techniques. These techniques not only allow us to get cost drivers’ 
elasticities and returns to scale but also help us to predict routes’ performance 
relative to ‘frontier efficiency’. 

61. Therefore, using regression and stochastic frontier analysis, we estimated a number 
of variants of the following model equation: 

 Ln Cost= f (Ln length of track + Ln traffic density + Ln average number of 
tracks+ Dummy for final year of CP4 + Time) +error term 

62. Specifically, our main model is such that the total maintenance and renewals costs 
(TOTEX) for each operating route (i) at time period (t) is a function of track kilometre 
(TRACKKM), traffic density (TRAINTRA), average number of tracks (AVTRACK), 
dummy for year 3 (i.e. 2013-14) which is the final year of CP4 (DYR3), a time trend 
(t) and a random error: 

LnTOTEXit=βo+β1lnTRACKKMit+β2lnTRAINTRAit+β3lnAVTRACKit+β4DYR3+β5

T+ eit   (1) 

63. When estimating efficiency, it is essential to appropriately specify the error term as it 
is the error term that yields the information about firm’s inefficiency.  Under OLS, we 
estimate a line that passes through the centre of the observed data points i.e. given 
the information available, the OLS line defines the costs that one would expect an 
average company to incur given its output. The distance between the OLS line and 
observed points is the residual (see Figure 11 below).  
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Figure 11 OLS regression and efficiency 

 

64. Some companies have higher costs (i.e. negative residuals for dots above the line) 
and some have lower costs (i.e. positive residuals for dots below the line). Therefore, 
for the purpose of defining “efficient cost”, the OLS line cannot define the ‘cost 
frontier’ as some companies can achieve lower costs. The Corrected OLS (COLS) 
approach adjusts the model by adding the largest negative OLS residual to the 
estimate of the intercept parameter. This eliminates the positive residuals as the line 
moves to the point(s) where the residual equals to zero which constitutes the frontier. 
Now the distance from the frontier captures notional inefficiency for each firm. See 
Figure 12 for illustration. 
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Figure 12 COLS frontier and efficiency 

 

65. COLS has the advantage of being simple and it is widely used by regulators. Given 
the small size and the quality of our data, we chose to use COLS as our main model. 
Under OLS (COLS) the consistency of the estimates of elements of β (other than the 
intercept) does not depend on the assumed distribution of the error term.  Moreover, 
the estimated intercept provides a consistent estimate of the actual intercept. 
However, COLS’ main drawback is that it assumes that any unexplained variation in 
cost is due to relative (in)efficiency. This assumption is not realistic as many other 
factors including errors in data measurement, omitted explanatory variables, 
modelling errors, and other unobservable factors may explain some of the variation.  

66. We cater for this draw back in two ways:  

(a) As in PR13, we will assume that 25% of inefficiency is explained by the random 
noise by applying an uplift of 25% to our efficiency scores. Other regulators 
have previously used similar methods of adjusting efficiency scores to account 
for noise. Our approach assumes the existence of some noise in every 
observation with larger efficiency gaps assumed to have a larger amount of 
noise. We use the following formula to adjust the scores: X*i,t=Xi,t+0.25(1-Xi,t), 
where Xi,t is route i’s COLS efficiency score in period t, and X*i,t is its “noise 
adjusted” efficiency score for the same period. 

(b) We also applied the stochastic frontier analysis (SFA) technique. The panel 
stochastic frontier model used to predict technical efficiency has similar 
specification as OLS except that the error term is decomposed into two 
independent elements: vit ~ iid N(0, σv2) is the random noise error component 
and uit ≥ 0 is the technical inefficiency error component as in equation (2) below: 
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LnTOTEXit=βo+β1lnTRACKKMit+β2lnTRAINTRAit+β3lnAVTRACKit+β4DYR
3+β5T+ vit + uit  (2) 

67. The SFA line usually lies between OLS and COLS and defines an efficiency frontier 
that allows for particular pattern of stochastic data error.  To illustrate this, Figure 13 
below compares OLS, COLS and SFA frontiers. In our analysis, we explored different 
types of SFA, which differ based on their assumption about the error term’s 
distribution.  

Figure 13 OLS, COLS and SFA frontiers and efficiency 

 

68. The following table summarises the main differences between our different models 
based on their assumptions about the error term’s distribution.  

Table 6 A comparison between different models and their assumptions 

Model name Model’s functional8 
form 

Components of 
unexplained  variable Components of inefficiency 

OLS/COLS LnCit =α+f (Xit;β) + uit        
-Assumes no noise.  

-Entire residual is 
interpreted as inefficiency 

Inefficiency varies 
independently across routes 
and across time 

PSFA (Pooled 
SFA) 

LnCit =α+f (Xit;β) + uit +vit    

 uit ~|N(0, σu2)|, 

 vit ~N(0, σv2)     

noise and inefficiency 
Inefficiency varies 
independently across routes 
and across time 

                                            
8 For a detailed discussion about these models, please refer to our previous publication “PR13 Efficiency 

Benchmarking of Network Rail using LICB”  
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Model name Model’s functional8 
form 

Components of 
unexplained  variable Components of inefficiency 

Pitt and Lee 
(1981):PL 

LnCit =α+f (Xit;β) + ui +vit    

 ui ~|N(0, σu2)|, 

 vit ~N(0, σv2) 

noise and inefficiency 

Time invariant but perfect 
correlation over time i.e. 
inefficiency varies between 
firms but is constant over time 

CUESTA 
Linear 

LnCit =α+f (Xit;β) + uit +vit    

 ui ~|N(0, σu2)|, 

 vit ~N(0, σv2) 

uit=exp(δ1it).ui 

Noise and inefficiency Time varying in a linear trend 

CSSRE 

LnCit =α1i+ α2it+ α1it2 

+f(Xit;β) + vit =Z’αi+ 

f (Xit;β)+ vit   

 E[αi]= α, V[αi]=Ω 

Noise and inefficiency 

Time varying with quadratic 
trends. Treats firm effects as 
random variables which can 
be correlated. Assumes no 
correlation between firm 
effects and regressors. 

RE (Random 
Effects ) 

LnCit =α+f (Xit;β) + ui +vit    

 

Noise and inefficiency ( 
random effects are 
interpreted as inefficiency) 
but no distribution 
assumption is made about 
inefficiency 

Time invariant 

True Random 
Effect 

LnCit =αi+f (Xit;β) + uit +vit   

 uit ~|N(0, σu2|, 

 vit ~N(0, σv2) 

αi ~N(α, σα2) 

Noise, inefficiency and  
firm effects interpreted as 
unobserved heterogeneity 

Inefficiency varies 
independently across routes 
and across time 

5. Our results 
69. This section presents and analyses our results. We start by presenting findings from 

our preferred COLS model using steady state adjusted data. To check the 
robustness of our findings, we ran various specifications of our preferred COLS 
model. We also checked our model specification by conducting various tests9 
including the testing for skewness, heteroscedasticity, omitted variables, and 
multicollinearity. None of the tests concluded that our model specification is invalid.  

70. In the second part of this section, we discuss our results from the stochastic frontier 
analysis (SFA) and compare them with our COLS results. In this section, we also 
discuss efficiency scores from our COLS model and compare them with those from 

                                            
9 Test statistics are not presented here but are available on request 



 

Office of Rail and Road | July 2018 PR18 Econometric top-down benchmarking of Network Rail | 37 

 

SFA. Finally, we conduct further robustness checks by presenting the results from 
our analysis of the data that is not steady state adjusted.   

71. These results should be considered with caution given the fact that our data as well 
as our model have some shortcomings that may affect their robustness. These 
include:   

(i) As earlier discussed, renewals expenditure may fluctuate without this 
being related to efficiency.  Although our objective was to undertake 
steady state adjustment for all the asset types, we were only able to do 
this for track renewals expenditure, as the data for other assets was 
inconsistent or missing. This means that our cost frontier may not exactly 
reflect the true cost structure. This is expected to improve in future 
analysis as longer time series may help to smooth out these fluctuations. 

(ii) Our small dataset coupled with lack of data on some important cost drivers 
such as topography, age of the network/asset conditions, etc. meant that 
we could not control for them. Similarly, heterogeneity and other factors 
(such as weather condition) that vary by year are beyond route’s control 
but affect their costs. OLS does not consider this temporal information and 
does not exploit the benefits of having a panel dataset. This may lead to 
our preferred model producing too low efficiency scores i.e. over-
statement of inefficiency. However, we note that all the model specification 
tests we conducted showed that our model is properly specified. 
Moreover, given that there is always a trade-off between controlling for 
many variables and getting reliable results from a regression on the one 
hand and the fact that we have a small dataset on the other, it may not 
have been appropriate to include all the missing cost drivers in this 
analysis even if we had had the data. In addition, we conducted 
robustness checks by running models that take into consideration the 
benefits of a panel dataset. Our results are comparable. 

72. One of the main objectives of this analysis was to set a foundation for our future 
analysis in our efforts to regulate Network Rail at route level. We anticipate that our 
future analysis will give us more robust estimates as we get longer data series which 
will enable us to do all the necessary adjustments. As for now, we regard these 
results as simply indicative of where more efforts could potentially be focused. 

5.1 Corrected Ordinary Least Squares (COLS) Model 
5.1.1. Our main COLS Model 

73. As discussed above, COLS is a basic model that it is commonly used by regulators. 
Its main advantage lies in its simplicity. The technique consists of estimating the OLS 
line that passes through the centre of the observed data points and then adjusting 
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the model by keeping the same gradient as the OLS line but changing the intercept 
until no firm has observed costs below the line. Table 7 below shows our results from 
OLS and a summary of COLS efficiency scores (both adjusted with a 25% uplift and 
non-adjusted). The model has an R-squared value of 0.92. The results suggest that: 

(i) Increasing track size and traffic density by 1% leads to an increase in total 
(i.e. maintenance and renewals) costs by 0.95% and 0.8% respectively; 

(ii) There are economies of densities: increasing traffic density increases the 
cost less than proportionally i.e. most densely used routes have cost 
advantage. However although our coefficients for track km are consistently 
below 1 which would suggest the existence of economies of scale, we 
tested the hypothesis whether the coefficient for track km is statistically 
different from 1 and found that it is not. Therefore, we did not find evidence 
to support the existence of economies of scale. Our results points more to 
the existence of constant returns to scale. 

(iii) For a given length of track km, it is cheaper to run it in multiple than single 
tracks.  Increasing the average number of tracks by 1% leads to a cost 
reduction of 0.34%. 

(iv) Year 2013-14 (which is the final year of CP4) is a statistically significant 
determinant of costs. One explanation for this could be that routes’ 
expenditure decisions were influenced by the fact that they were in the 
final year of the control period. Our observation on trends in data also 
confirmed this. 

(v) The summary of efficiency scores reports an average difference between 
the modelled frontier efficiency and route’s notional efficiency scores of 
21%. However, as earlier discussed, OLS unrealistically considers that all 
the deviation from the frontier is explained by inefficiency. In our analysis, 
we assumed that 25% of the score could be explained by noise in the 
data. We therefore adjusted this score by a 25% uplift as explained above.  

(vi) Our model’s final score shows that there is an average difference of 16% 
between the modelled frontier efficiency and routes’ notional efficiency 
scores. This notionally means that, all other things being equal, an 
average route could have spent an average of 16% less (if it operated at 
the level of the modelled frontier) and still renewed and maintained the 
same length of track with the same traffic density and same average 
number of tracks. However, we are not sufficiently confident in the 
analysis or the data that underpins it to conclude that these notional 
efficiency score precisely represent bona fide differences in efficiency 
between routes. 
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(vii) Table 88 below presents our modelled notional efficiency scores as 
compared to the modelled ‘frontier efficiency’. Although the model 
behaves technically well, we observe that the inferred routes’ efficiency 
scores fluctuate substantially through the years. This may be a direct 
consequence of fluctuations in renewals expenditure (and is why 
modelling of ‘Totex’ in rail and other industries has proved particularly 
difficult). 

Table 7 OLS results and COLS efficiency scores for our main model 

Lntotex Coef. Std. Err. t P>t 
95% Conf. 

Interval 

Lntrackkm 0.953 0.044 21.9 0.000 0.865 1.040 

Lntraintra 0.792 0.087 9.09 0.000 0.616 0.968 

Lnavtrack -0.341 0.178 -1.92 0.062 -0.70 0.018 

DYR3 0.214 0.050 4.28 0.000 0.113 0.315 

Time 0.004 0.014 0.26 0.796 -0.025 0.032 

_cons -0.008 0.049 -0.16 0.871 -0.106 0.090 

Summary of Non adjusted COLS efficiency scores 

 Observations Mean Std. Dev. Min Max 

eff_cols 50 0.79 0.11 0.60 1 

Summary of adjusted COLS efficiency scores 

 Observations Mean Std. Dev. Min Max 

Eff_cols_adj 50 0.84 0.33 0.70 1 

 
74. In Table 8 below, we show modelled notional efficiency scores for each route from our 

COLS model (these results include the 25% noise adjustment). 
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Table 8 Modelled notional efficiency scores  

Year Anglia EM Kent LNE LNW Scotland Sussex Wales Wessex Western Average 

11/12 0.83 0.89 0.84 0.85 0.82 0.84 0.98 0.71 1.00 0.90 0.87 

12/13 0.87 0.79 0.81 0.82 0.78 0.86 0.81 0.70 0.96 0.70 0.81 

13/14 0.94 0.91 0.78 0.87 0.77 0.88 0.79 0.81 0.91 0.76 0.84 

14/15 0.80 0.99 0.72 0.91 0.83 1.00 0.80 0.87 0.79 0.76 0.85 

15/16 0.88 0.95 0.74 0.85 0.76 1.00 0.80 0.86 0.86 0.77 0.85 

Average 0.86 0.91 0.78 0.86 0.79 0.92 0.84 0.79 0.90 0.78 0.84 
 

75. This information can also be visualised in Figure 14 below. 

Figure 14 Modelled routes notional efficiency scores 

 
 

5.1.2. Other COLS models 

76. We run different COLS model specifications. Table 9 below compares their results 
with our main model (TOTEXOLS) we discussed above. In model MAINOLS, our 
dependent variable is maintenance cost while model RENOLS uses renewals cost as 
dependent variable. The following three models (TOTPAFR, MAINTPAFR and 
RENPAFR) are similar to the previous ones but use passenger and freight traffic 
densities as separate regressors instead of a combined traffic density variable 
(TRAINTRA). 
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Table 9 Various COLS model specifications 
Variable TOTEXOLS MAINTOLS RENOLS TOTPAFR MAINTPAFR RENPAFR 

Lntrackkm 0.953*** 0.999*** 0.939*** 0.984*** 0.951*** 0.999*** 

Lntraintra 0.792*** 0.862*** 0.783***    

Lnavtrack -0.341* 0.063 -0.492** -0.209 -0.039 -0.276 

Time 0.004 0.060*** -0.019 0.001 0.063*** -0.024 

DYR3 0.214*** -0.140*** 0.333*** 0.216*** -0.136*** 0.335*** 

Lnpassdens   0.716*** 0.855*** 0.681*** 

Lnfreidens   -0.015 0.133** -0.067 

_cons -0.008 -0.107** 0.026 0.007 -0.102** 0.045 

N 50 50 50 50 50 50 

r2 0.92 0.94 0.88 0.92 0.95 0.88 

Eff. Score  0.84 0.84 0.80 0.83 0.84 0.78 

* p<.1; ** p<.05; *** p<.01 

77. The results in the above table suggest that there are economies of density. They also 
show that passenger traffic density is a statistically significant determinant of 
maintenance and renewals costs.  

78. However, freight traffic density is only positive and significant in the model with 
maintenance as the dependent variable. In other models, it is negative, very small 
and not significant which seems counter intuitive. Freight trains are usually slower 
and heavier than passenger trains. Therefore, the two types of trains have slightly 
different wear and tear characteristics on the network and thereby different cost 
implications. However, we cannot fully isolate the effect of each as opposed to the 
other as in each there is an element of speed and weight affecting wear and tear of 
the network they both run on. Moreover, in our data, freight traffic is only 8% of 
passenger traffic. This means that given that both are intended to measure the effect 
of traffic density on the costs of wear and tear, it may be that the passenger traffic 
variable dominates the freight traffic variable when we control for both together. 
Furthermore, given that freight is a small fraction of train km, this may imply that for 
the same marginal cost (given average cost is greater by definition), the elasticity for 
freight should be smaller than the one for passenger traffic. We therefore consider 
that aggregating passenger and freight traffics together in one variable (TRAINTRA) 
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is more pragmatic and sensible. Network Rail also recommended this in their 
comments on our PR13 top-down benchmarking results and during our discussions 
in the course of this analysis. 

79. For a robustness check, we also ran the same models as above but using the data 
where renewal expenditure is not steady state adjusted. We obtained comparable 
results as presented in Table 10 below. 

Table 10 COLS models with renewals cost data that is not steady state adjusted 

Variable TOTEXOLS MAINTOLS RENOLS TOTPAFR MAINTPAFR RENPAFR 

Lntrackkm 0.964*** 0.999*** 0.954*** 0.936*** 0.951*** 0.934*** 

Lntraintra 0.761*** 0.862*** 0.728***    

Lnavtrack 0.127 0.063 0.144 0.088 -0.039 0.129 

Time 0.050*** 0.060*** 0.046*** 0.051*** 0.063*** 0.047*** 

DYR3 0.183*** -0.140*** 0.287*** 0.186*** -0.136*** 0.290*** 

Lnpassdens    0.736*** 0.855*** 0.696*** 

Lnfreidens    0.089 0.133** 0.072 

_cons -0.139*** -0.107** -0.15*** -0.13*** -0.102** -0.149** 

N 50 50 50 50 50 50 

r2 0.936 0.941 0.906 0.937 0.948 0.906 

Eff. Score 0.88 0.88 0.86 0.88 0.88 0.85 

* p<.1; ** p<.05; *** p<.01 

80. The main model (TOTEXOLS) shows that track size and traffic density are positive 
and significant determinants of maintenance and renewal costs at 1% with 
coefficients 0.96 and 0.76 respectively ( comparable to the ones obtained with the 
steady state adjusted data i.e. 0.95 and 0.79 respectively). All the model show 
comparable results. Passenger traffic density is always positive and significant. 
Freight density has the expected positive sign but its impact remains very small. The 
main model (TOTEXOLS) shows that on average, and all other things equal, the 
difference between modelled frontier efficiency  and actual notional efficiency is 12% 
compared to 16% obtained using data with track only steady state adjustment. In 
these models, average track becomes positive and is not a statistically significant 
determinant of costs. This may suggest that the model with steady state adjustment 
is superior to the one with data that is not steady state adjusted. 
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5.2. Stochastic frontier analysis (SFA) 

81. As earlier discussed, the main problem with COLS models is that they assume that 
any unexplained variation in cost is due to inefficiency. In this section, we apply the 
SFA models that have the advantage of decomposing the unexplained variation in its 
two main components i.e. the error term and the inefficiency term. In these models, 
inefficiency is unobserved, is heterogeneous between comparators, and probably 
has an element of time persistence or time invariance. As earlier discussed, these 
models make different assumptions about the inefficiency term and some of them are 
able to make a distinction between efficiency and other unobserved time invariant 
factors. 

82. In all the six SFA models as shown in Table 11 below, track size and traffic density 
are positive and statistically significant determinants of maintenance and renewal 
costs. All the results are comparable to our COLS results. Apart from CUESTAL (for 
traffic density), all the models confirm the existence of economies of densities for 
traffic. Average number of tracks is statistically significant in three SFA models but 
has always the expected negative sign. Similarly, the dummy for year 2013-14 is 
positive and statistically significant in five out of six SFA models. In the CSSRE 
model, it shows a negative but very small coefficient.  As expected, modelled notional 
efficiency scores vary for each model with CUESTAL and CSSRE producing scores 
that are comparable to our adjusted COLS scores.  

Table 11 SFA Models with renewal cost data that is steady state adjusted   

Variable COLS PSFA PL CUESTAL RE TRRE CSSRE 

Lntrackkm 0.953*** 0.953*** 0.963*** 0.974*** 0.948*** 0.948*** 0.952*** 

Lntraintra 0.792*** 0.792*** 0.863*** 1.080*** 0.838*** 0.817*** 0.767*** 

Lnavtrack -0.341* -0.341** -0.345* -0.238 -0.412 -0.33 -0.373*** 

Time 0.004 0.004 0.004 0.023 0.004 0.004 0.223 

DYR3 0.214*** 0.214*** 0.214*** 0.225*** 0.214*** 0.214*** -0.007 

_cons -0.008 -0.008 -0.111** -0.239** -0.008 -0.012 0.014 

N 50 50 50 50 50 50 50 

Eff. Score 0.84 0.99 0.9 0.84 0.91 0.99 0.82 

* p<.1; ** p<.05; *** p<.01 

 

83. For a robustness check, we also run SFA models for the data with no steady state 
adjustment. Again, we get comparable results. Track size and traffic density are 
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positive and significant determinants of maintenance and renewals costs. The 
existence of economies of density is confirmed in all models. Contrary to the results 
from the steady state adjusted data analysis, here the average number of track is not 
a significant determinant of maintenance and renewal costs while time becomes 
positive and significant. Again, the dummy for year 2013-14 (final year of CP4) is 
positive and statistically significant.  

Table 12 SFA Models with renewals cost data that is not steady state adjusted 

Variable COLS PSFA PL CUESTAL RE TRRE CSSRE 

Lntrackkm 0.964*** 0.964*** 1.003*** 1.030*** 0.961*** 0.989*** 0.952*** 

Lntraintra 0.761*** 0.761*** 0.896*** 0.942*** 0.836*** 0.825*** 0.828*** 

Lnavtrack 0.127 0.127 0.226 0.251 0.064 0.122 0.127 

Time 0.050*** 0.050*** 0.050*** 0.054*** 0.050*** 0.056*** 0.183*** 

DYR3 0.183*** 0.183*** 0.183*** 0.192*** 0.183*** 0.200*** 0.050*** 

_cons -0.139*** -0.139 -0.237*** -0.239*** -0.138*** -0.258*** -0.13*** 

Eff Score 0.88 1.00 0.9 0.91 0.88 0.9 0.82 

* p<.1; ** p<.05; *** p<.01 

6. Conclusion 
84. In this analysis, we used a 5-year balanced panel data (covering the period from 

2011-12 to 2015-16) for Network Rail’s ten routes to analyse the impact of different 
cost drivers on Network Rail’s maintenance and renewal costs and to estimate the 
notional cost efficiency of different routes. 

85. We obtained the data from Network Rail and cleaned it with Network Rail’s support. 
We started the analysis by ensuring consistency and reliability of our data. We did 
this by conducting various checks including identifying potential outliers, missing or 
inconsistent data, adjusting for year-on-year fluctuations in renewal expenditure 
through a steady state adjustment, adjusting the cost data for inflation, etc. Any 
inconsistency was investigated and handled with the help of Network Rail. Then we 
discussed the trends in our data for the period under analysis.  

86. Given the small size of our dataset as well as lack of data on some important cost 
drivers, we chose to base our conclusions on a simple but commonly used 
econometric approach, COLS, the results of which were checked against more 
advanced stochastic frontier analysis models. We conducted robustness checks by 
running models with different specifications of the cost variable (maintenance and 
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renewals cost together and then separately) as well as the traffic density variable 
(passenger train km and freight train km together and then separately). We also 
presented results with both steady state adjusted and non-steady state adjusted 
data. Overall, all the models give us comparable results. We also conducted a 
number of tests to check the validity of our model specification, and all of them 
showed that our model specification is valid. 

87. Our preferred COLS model suggests that a 1% increase in track size and traffic 
density leads to an increase in maintenance and renewals costs by 0.95% and 0.8% 
respectively. We found evidence of the existence of economies of densities i.e. 
increasing traffic density increases the cost less than proportionally .This suggests 
that routes with more traffic density may have a cost advantage. Although the 
coefficient for track size (i.e. track km) was consistently below 1, which would 
suggest the existence of economies of scale, we could not conclude that the 
coefficient was statistically different from 1, suggesting that returns to scale may be 
constant. In addition, our analysis concludes that for a given length of track, it is 
cheaper to run it in multiple rather than a single track. Our results have also suggest 
that on average, routes spent more in the final year of CP4 than in any other year.  

88. Our preferred COLS model produced a wide range of notional efficiency scores 
which fluctuate year on year. Everything else being equal, the difference between 
modelled frontier efficiency and route notional efficiency ranges from 8% to 22% but 
on average, it is modelled to be 16%. 

89.  This analysis has been useful in many ways. These include: 

(i) It has helped us to improve our understanding of Network Rail’s routes’ 
characteristics (i.e. size, complexity, etc.) and spending behaviours (i.e. 
their financial performance, where routes are outliers, etc.) 

(ii) It has laid the foundation for future analysis by identifying the weaknesses 
in our data and methodology that should be corrected in future analysis; 

(iii) These results could be used to sense check results from other analysis 
within and outside ORR. 

90. However, these results should be considered with caution as our analysis faced 
some constraints that may have significantly affected the robustness of our results. 
These include:  

(i) The fact that we used a small data set;  
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(ii) Due to lack of data, we were not able to control for some variables that are 
commonly regarded as important drivers of costs (such as topography and 
route complexity, age of assets, etc.);  

(iii) and the fact that we were unable to fully account for the lumpiness 
character of renewals expenditures, etc. 

91. These constraints meant that we had to adopt a very simple COLS model as our 
main econometric technique. COLS models unrealistically assume that all the 
unexplained variation in cost is due to inefficiency. However, we know that in reality, 
the variation may also be due to different factors including measurement errors, 
omitted variables or other random occurrences. Although we catered for this by 
adjusting all our COLS efficiency scores upward by 25% (having regard to best 
practices in the regulatory industry), there is obviously some arbitrariness in choosing 
this uplift number and we consider that more sophisticated but direct approaches 
applied to a bigger dataset would have given us more credible results. We intend for 
this to be possible in our future analysis, as we will have longer data series. 

92. Given these constraints, and for a more reliable future analysis in future control 
periods, we will work with Network Rail to look for ways to improve the quality of data 
available on all the cost drivers.  We will support this by including the data needed for 
econometric top-down benchmarking in the ORR-Network Rail data protocol for CP6 
and beyond. 

93. As for the current analysis, these results should be used alongside other analysis to 
form an idea about Network Rail’s efficiency. They are, in general terms, consistent 
with our view that there are opportunities for further efficiency savings. 
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Appendix B - Benchmarking of Maintenance 
Delivery Units 
Econometric top-down benchmarking of Network Rail’s 
maintenance delivery units (MDUs) 

1. Introduction 
1. As part of PR18, we have also undertaken the econometric top-down benchmarking 

of Network Rail’s maintenance delivery units (MDUs). While this is a stand-alone 
analysis benchmarking maintenance costs for Network Rail’s MDUs, it complements 
our top-down benchmarking of Network Rail’s routes described in Appendix A. As 
explained in the econometric top-down benchmarking summary paper, these two 
strands of analysis are part of the PR18 efficient cost analysis whose ultimate aim is 
to set challenging but achievable efficiency savings targets for Network Rail during 
the next control period (CP6). 

2. The main objective of this analysis is to compare the maintenance cost efficiency of 
Network Rail’s MDUs. To achieve this, we use historical data to estimate a cost 
function and then produce efficiency scores for each MDU relative to the most 
efficient peer(s). For more details on this methodology and its assumptions, please 
see the analysis benchmarking Network Rail’s routes in Appendix A. 

3. In previous periodic reviews, we used international data to benchmark Network Rail’s 
efficiency against similar infrastructure managers in Europe. In comparison, this intra-
Network Rail benchmarking gives us insightful information about performance within 
Network Rail. MDUs (and routes) are easy to compare as they operate in broadly 
similar conditions. 

4. MDUs are operating units within routes that are responsible for Network Rail’s 
maintenance activity. At the time of our analysis, there were 3710 MDUs. They 
accounted for nearly 70% of total network maintenance expenditure during the two 
years covered by this analysis i.e. 2014-15 and 2015-16. According to a Network Rail 
internal report (2012), MDUs: 

(i) inspect, service and maintain track, off track (line side vegetation, 
boundaries, drainage), signalling, electrical power and fixed plant assets; 

(ii) respond to unplanned infrastructure occurrences; 

                                            
10 The number and boundaries of MDUs change. For instance, Clapham, Eastleigh and Woking have 

recently become Wessex Inner and Wessex Outer. However, we keep them in our analysis as allocating 
the data to the two new MDUs may introduce further sources of errors in the data. 
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(iii) provide first line engineering support for work delivery; 

(iv) plan and coordinate resource requirements for work delivery; 

(v) manage and report maintenance activities; and 

(vi) liaise with other stakeholders (internal and external) to minimise impact of 
maintenance activities. 

5. In carrying out this analysis, we worked closely with Network Rail, who not only 
provided us with the necessary data but also worked constructively with us to 
cleanse it and correct errors and inconsistencies that we identified.  

6. In this analysis, we applied the corrected ordinary least squares (COLS) 
methodology. This econometric top-down benchmarking approach is useful in 
identifying MDUs that perform most/less efficiently thereby informing the decision of 
where more scrutiny should be focused. However, econometric top-down 
benchmarking is not able to explain the reasons for the difference in efficiency 
among the MDUs. Moreover, as the scope and activities in each MDU are different, 
the high-level ‘efficiency’ scores produced by this approach may not fully reflect the 
exact level of efficiency.  

7. This paper is organised as follows: after this introduction, section 2 discusses our 
data, trying to understand MDUs and their characteristics. Section 3 discusses our 
methodology. Section 4 presents our results while section 5 concludes. 

2. MDUs data and its sources 
8. This section presents a few important variables (some of which we used in our 

econometric analysis) from Network Rail’s MDU data. We discuss their sources and 
present trends in these variables to help understand differences in MDUs’ behaviours 
and characteristics.  

9. Total maintenance expenditure. MDUs accounted for 70% of total Network Rail 
maintenance expenditure in 2014-15 and 67.5% in 2015-16. So, over the two years 
covered by our analysis, only about 30% of Network Rail’s maintenance expenditure 
was centrally managed. We obtained the data on total maintenance expenditure from 
Network Rail’s regulatory accounts (2015-16) statement 8c. All the figures were in 
2015-16 prices. Although the total amount spent on maintenance in MDUs was 
higher in 2015-16 than 2014-15 (from £1,198m to £1,248m), due to increased 
centrally managed spending, the total amount spent in MDUs was almost constant 
(£842m). Our analysis only looks at MDU spending. The data shows that the average 
MDU spent £23m per year. On average, Perth spent the least on maintenance 
(£14m); and Lancashire & Cumbria spent the most (£58m). The Lancashire & 
Cumbria data point looks like an outlier. As explained later in this document, in our 
analysis we run regressions with and without it to assess its impact. However, on 
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balance we decided to keep it in our final model because it is a genuine data point 
arising from the merger of two MDUs namely Preston and Carlisle. To reduce its 
impact we transformed the data by using the data in form of each variable’s data 
point as a ratio of the average of all observations on that variable. We then used the 
data after transforming it into logarithms. This has greatly reduced any impact that 
any outlier could have on the results.  

Figure 15 Total maintenance expenditure 

 

10. Maintenance expenditure per track km. We calculated maintenance expenditure 
per track km by dividing maintenance spending by the length of track in each MDU. 
An average MDU spent £31,000 to maintain 1 km of track. This measure should be 
considered carefully as the budget in question was not spent on track only. Bletchley, 
Clapham, Croydon, Euston, London Bridge and Romford spend above average while 
Perth has the lowest maintenance cost per track km at £11,000/ km 

Figure 16 Maintenance expenditure per track km 
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11. Traffic density: We calculated the traffic density as train km (both passenger and 
freight) divided by track km in each MDU. Network Rail collected both track length 
and train km data through its assets management services. On average, traffic 
density was 18000 train km per track km. Croydon had the highest traffic density 
which partly explains its high maintenance cost per track km. Perth has the lowest 
density which may also explain its low maintenance cost per track km. 

Figure 17 Traffic density 

 

12. Track km and other track characteristics: Network Rail provided us with data on 
different network characteristics that they collect from their assets management 
services. According to this data, Lancashire & Cumbria and Derby are responsible for 
the longest tracks while Euston and London Bridge look after the shortest length of 
tracks. On average, the network in MDUs has 2 tracks with Euston, Peterborough 
and Reading having the highest number of average tracks (Track km/Route km) at 
3.2. Average electrification was 50% (0% in Bristol, Cardiff, Perth, Plymouth and 
Swindon; and more than 95% in Clapham, Croydon, Euston, London Bridge, 
Orpington and Peterborough). 

13. The network track is also classified according to the speed bands (miles per hour) i.e. 
the length of track in each of the following speed bands 0-35, 40-75, 80-105, and 
110-125. For each MDU, we calculated the percentage (density) of the track in each 
band. Sheffield has the highest density of the lowest speed tracks (0-35) at 22%. 
Stratford has the highest density of the high-speed tracks (110-125 miles/hour) at 
50%. 
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14. Tracks are further classified as primary, secondary and rural. Peterborough has the 
highest density of primary tracks (94%); Eastleigh has the highest secondary track 
density (77%); and Glasgow has almost 50% rural tracks. 

15. Finally, tracks are classified based on criticality11. Bletchley has highest density of 
criticality 1 tracks (87%) while Peterborough has the highest density of criticality 2 
tracks (60%). London Bridge has the highest density of criticality 3 tracks (70%), 
Tottenham the highest density of criticality 4 tracks (60%) and Shrewsbury the 
highest density of criticality 5 tracks (62%). 

16. We found that there is high correlation between high-speed tracks, primary tracks 
and criticality 1 densities on the one hand, and between low-speed tracks, rural 
tracks and criticality 5 densities on the other. For example, Stafford and Bletchley 
have high densities of high-speed (110-125) tracks, primary tracks and criticality 1 
tracks. However, this information should be interpreted carefully as a network section 
with high densities of rural, criticality 5 and low-speed tracks will not necessarily be 
cheaper to maintain. This is because there are other factors that influence costs 
(such as topography, age of the assets, weather, accessibility, etc.) which are not 
necessarily accounted for in those measures. 

                                            
11 Network Rail defines Route criticality as a “measure of the consequence of the infrastructure failing to 

perform its intended function, based on the historic cost of train delay per incident caused by the track 
asset”. Using this measure, each strategic route section (SRS) of the network has been assigned a route 
criticality band from 1 to 5. The lower the number of the criticality band, the more a delay is likely to cost 
should infrastructure fail. The classification of each SRS into criticality bands is used in the development of 
Network Rail’s asset policy as a first step to matching the timing and type of asset interventions. 
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Figure 18 Track km 

 

17. In our analysis, we also controlled for labour input costs. The Office of National 
statistics (ONS) publishes data on weekly earnings by local authority. We matched 
each of the 37 MDUs with local authorities in which they operate. This data is not 
railway specific and on average, Network Rail staff’s weekly pay is higher than this. 
However, as we do not have data specific to Network Rail, we think that this data is 
good enough to gives us a broad idea of how expensive labour inputs (in general) 
are in each MDU’s geographical area of operation. Similar approaches have been 
used in previously published academic research (e.g. see Wheat and Smith, 2008i). 
While our analysis could have benefited from controlling for prices of other inputs 
such as materials and machinery, we did not have the data to do so. However, we 
can assume that this is constant between MDUs and thus its effect could be 
accounted for within the constant term. 
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18. According to ONS, the data shows seasonally adjusted real average weekly earnings 
(AWE) per local authority. The data is in 2015 prices. The figure below visually 
compares labour input prices in the 37 MDUs geographical areas. The data suggests 
that labour inputs in Euston, London Bridge, Tottenham and Orpington should be 
more expensive while Newcastle, Shrewsbury and Doncaster should have the 
cheapest labour input. 

Figure 19 Real weekly wage 

 

3. Methodology 
19. We analyse MDU maintenance cost efficiency using econometric top-down 

benchmarking. It involves establishing a cost function that explains differences in 
spending with a set of cost drivers. Comparators that most outperform this function 
form the ‘efficient frontier’. By calculating the distance from this frontier, we can 
estimate the relative efficiency of the other comparators. The further they are from 
the frontier, the less efficient they are and therefore the greater is their scope for 
efficiency catch-up. 

20. This technique compares each MDUs performance with the ‘best in class’ performer 
(s). Econometric top-down benchmarking also produces marginal costs for 
infrastructure use (i.e. elasticities from multiple cost drivers). However, the main 
objective of this analysis is to develop an approach for benchmarking MDUs’ 
maintenance cost efficiency. 
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21. Econometric top-down benchmarking needs data of sufficient quantity and quality to 
produce reliable estimates. It may suffer from poor model specifications and 
functional form and does not allow for a qualitative understanding of the reasons for 
differences between companies. However, it may help to identify areas for further 
investigation and challenge. Our analysis and conclusions are mindful to these facts. 

22. For more details on the econometric top-down benchmarking methodology and its 
assumptions, please refer to our analysis benchmarking Network Rail’s routes in 
Appendix A. 

23. Our methodology (choice of functional form, choice of variables to include in our 
analysis, etc.) was based on two strands of previous analysis: internal analysis by 
Network Rail (2010, 2011, and 2012), and published work by the Institute for 
Transport Studies-University of Leeds (Wheat and Smith, 200812). Although those 
two studies had different objectives, they are both useful to our present analysis 
especially because they both focus on Network Rail’s MDUs. In brief the two studies 
proceeded as follows: 

24. Network Rail’s internal analysis is the closest to ours in both its focus and objective. It 
applied ordinary least squares (OLS) regressions on 2010-11 data for 39 MDUs to 
estimate the relationship between maintenance costs and selected cost drivers. With 
total maintenance cost as their dependent variable, they controlled for the following 
cost drivers: structural factors (i.e. track length, level crossings, switches & crossings 
unit density, traffic volumes (train km/track km) and absolute track geometry (ATG)). 
According to Network Rail, their results “compare the best in class with the other 
delivery units and the difference between the actual and modelled budgets can be 
seen as potential for efficiency”. The results were used to set the MDUs’ budget with 
efficiency targets for the last 3 years of CP4 of around 16% i.e. £120m (Network Rail, 
2012).  

25. In their study, Wheat and Smith (2008)’s aim was to estimate the marginal cost of 
running more or less traffic on a fixed network in the UK. They applied ordinary least 
squares (OLS) to a cross section dataset of 53 MDUs in 2005-06. Their cost function 
relates total maintenance costs to output variables (train km/track km, tonne 
miles/track km, etc.), prices of inputs (labour, energy, etc.) and infrastructure 
capability/quality variables (route miles, number of switches and crossings, line 
speed, electrification, etc.). As the first step in top-down efficiency benchmarking is to 
estimate a cost function, this study is useful to us, especially in choosing the right 
independent variables. 

                                            
12 Wheat. P.,  and Smith, A.S.J. (2008),  Assessing the Marginal Infrastructure Maintenance Wear and Tear 

Costs for Britain's Railway Network, Journal of Transport Economics and Policy, Vol. 42, No. 2 , pp. 189-
224. Available at https://www.jstor.org/stable/20054045 
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26. In addition to those two studies, data availability was a major factor in our choice of 
methodology and which variables to include. In fact, Network Rail’s collection of data 
at MDU level has not been consistent enough to provide us with all the variables we 
wish we could have included in our model (e.g. asset conditions and age). Therefore, 
given our small dataset (a two-year panel with 74 observations), the possibility of 
errors in measuring our variables, and the unavailability of data on some theoretically 
important cost drivers, our preferred model is a corrected ordinary least squares 
(COLS) model in a Cobb-Douglas double-log form as follows:  

Ln(Maintenance Total Cost)= f(Lntrackkm + Lntraffic density_pax + Lntraffic 
density_fr + Lnwage + Electrified density+ Speed_ 40-75 density+ Ln average 
tracks+ Criticality_1 density) + random error 

Where: 

 Ln means ‘natural logarithm’; 

 track km is the length of the track;   

 traffic density_pax means passenger train km divided by track km; 

 traffic density_fr  means  freight train km divided by track km; 

 average track stands for track km divided by route km; 

 wage stands for average real weekly earnings; 

 electrified density is the proportion of track that is electrified; 

 speed_ 40-75 density is the proportion of track with speed between 40-75 
miles per hour; and 

 Criticality_1 density is the proportion of track in criticality band  

27. A Cobb-Douglas functional form is restrictive since it assumes constant cost 
elasticities. A translog cost function would be less restrictive, and theoretically more 
useful, as it incorporates additional second order interaction terms. But, in our view, a 
Cobb-Douglas functional form is more suitable to our data because of its size and 
low levels of variability. 

28. Our MDU analysis applies the same methodology as our route level analysis. 
However, in addition to track size, traffic density and average track, here we also 
control for electrification density, speed 40-75 density and criticality_1 density. We 
expect those variables to have a positive relationship with the costs of maintaining 
the network within MDUs. Our expectation is that a highly electrified network as well 
as that with high density of criticality_1 track is more costly to maintain.  

29. The main weakness in using a COLS model in analysing efficiency is that it assumes 
that any deviation from the efficiency frontier is only explained by inefficiency. This is 
a very strong (and perhaps unrealistic) assumption especially when dealing with a 



 

Office of Rail and Road | July 2018 PR18 Econometric top-down benchmarking of Network Rail | 56 

data like ours i.e. a small dataset where the likelihood of measurement errors is high. 
Therefore, following the practice by other regulators (such as Ofwat and Ofgem as 
well as ORR’s previously published analysis), we decided to uplift all the efficiency 
scores by 25%.13  

30. During the analysis, we conducted different statistical tests to check the validity of our 
model specification. These include tests of skewness, multicollinearity, and 
heteroscedasticity. None of the tests14 suggested that our model specification is 
invalid. 

4. Results 
31. This section presents the results from our model. As mentioned earlier, our analysis 

faced some significant data quality and quantity constraints. This means that these 
results have to be considered with caution, as we do not think they are robust 
enough to be used alone to draw strong conclusions about individual MDUs’ 
efficiency. Therefore, while we expect our future analysis to produce more robust 
results, we recommend that in PR18, these results are used only to support and 
sense check results from other analyses. 

32. Our model’s results are in Table 13 below. All variables in the model are statistically 
significant and coefficients have the expected signs. The model suggests the 
existence of economies of scale and density. This means that increasing network 
size and traffic density increases the cost less than proportionally: MDUs with longer 
networks and those with more densely used networks have a cost advantage. 
Specifically, our model suggests that increasing track length by 1% increases the 
maintenance cost by 0.54%. Increasing passenger and freight traffic density by 1% 
increases maintenance cost by 0.57% and 0.13% respectively. Track length and 
traffic density are both statistically significant at 1%. Electrification and wage are 
positively related to maintenance cost and are statistically significant at 10%. As 
expected, increasing the proportion of the track that is in criticality band 1 increases 
maintenance cost and the variable is statistically significant at 1%. Similarly, our 
model suggests that it is cheaper to run the network in multiple tracks rather than in 
single track. 

  

                                            
13 On the benefits of using COLS as compared to other complicated models such as Stochastic Frontier 

analysis, as well as rationale of the adjustments made on the efficiency scores obtained from it, please 
refer to the discussion in our report on benchmarking Network Rail’s routes 

14 Available on demand 
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Table 13 OLS results and COLS notional efficiency scores for our main model 

Maintenance total Coef. Std. Err. t P>t [95% Conf. Interval] 

LnTrackkm 0.540 0.120 4.5 0.000 0.300 0.780 

Electified_density 0.120 0.047 2.54 0.013 0.026 0.214 

LnTraffic_density_pax 0.566 0.110 5.16 0.000 0.347 0.785 

LnTraffic_density_fr 0.132 0.041 3.2 0.002 0.050 0.215 

Speed_40_75_km 0.264 0.071 3.74 0.000 0.123 0.406 

LnAvg_tracks -0.372 0.209 -1.78 0.079 -0.789 0.045 

Critical_1_km 0.209 0.046 4.52 0.000 0.117 0.301 

LnWage_ons 0.202 0.119 1.7 0.095 -0.036 0.440 

_cons -0.051 0.056 -0.9 0.369 -0.162 0.061 

 Obs. Mean Std. Dev. Min Max  

25% upward adj. eff_score 74 0.84 0.34 0.63 1.00  

33. Our COLS model produced a wide range of notional efficiency scores which fluctuate 
year on year. Everything else being equal, the difference between modelled frontier 
efficiency and notional efficiency scores for particular MDUs ranges from 3% to 37% 
but on average, it is modelled to be 16%. We present this in table 14 (which also 
maps MDUs with the operating routes to which they belong) and visually in Figure 20 
below.  

34. The main shortcoming with using COLS to analyse efficiency is that it assumes that 
any deviation from the frontier is only explained as inefficiency. However, this is a 
very strong assumption, especially when analysing a small dataset with high 
likelihood of measurement errors like in the present case. We had the option to adopt 
more complicated approaches such as stochastic frontier analysis (SFA), which use 
more realistic assumptions. But we chose to use COLS as, in our view, its simplicity 
means it is the most appropriate to analyse the kind of data at our disposal. However, 
to reduce the impact of the COLS strong assumption, we adjusted each efficiency 
score by 25% assuming that 25% of the deviation from the frontier results from 
random noise. This practice is widely used by regulators and we used it in our 
previous benchmarking15 work in PR13.  

  

                                            
15 For more details, please see the Benchmarking of routes in appendix A 
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Table 14 Modelled individual MDUs notional efficiency scores  

Route MDU 2014-15 2015-16 Average 

Anglia 

Ipswich 0.72 0.78 0.75 

Romford 0.78 0.85 0.82 

Tottenham 0.84 0.93 0.89 

EM 
Bedford 0.81 0.85 0.83 

Derby 0.87 0.92 0.89 

LNE 

Doncaster 0.97 0.90 0.93 

Leeds 1.00 0.93 0.96 

Newcastle 0.81 0.71 0.76 

Peterborough 0.96 0.96 0.96 

Sheffield 0.90 0.89 0.90 

York 0.95 0.87 0.91 

LNW 

Bletchley 0.78 0.81 0.79 

Euston 0.69 0.78 0.73 

Lanc & Cumbria 0.63 0.63 0.63 

Liverpool 0.92 0.89 0.90 

Manchester 0.72 0.75 0.73 

Saltley 0.90 0.88 0.89 

Sandwell & Dudley 0.82 0.77 0.79 

Stafford 0.99 0.93 0.96 

Scotland 

Edinburgh 0.93 0.88 0.90 

Glasgow 0.97 0.95 0.96 

Motherwell 0.87 0.87 0.87 

Perth 0.97 0.97 0.97 

Sussex 
Croydon 0.78 0.79 0.78 

Brighton 0.81 0.80 0.80 

Kent 

Ashford 0.72 0.78 0.75 

London Bridge 0.81 0.84 0.82 

Orpington 0.89 0.92 0.90 
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Route MDU 2014-15 2015-16 Average 

Wales 
Cardiff 0.63 0.63 0.63 

Shrewsbury 0.90 0.85 0.87 

Wessex 

Clapham 0.81 0.83 0.82 

Eastleigh 0.71 0.72 0.72 

Woking 0.78 0.90 0.84 

Western 

Bristol 0.79 0.81 0.80 

Plymouth 0.81 0.83 0.82 

Reading 0.81 0.79 0.80 

Swindon 0.85 0.78 0.81 

  Average 0.83 0.84 0.84 
 

Figure 20 MDUs’ notional efficiency scores 
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5. Conclusion
35. About 70% of Network Rail’s maintenance budget is spent in maintenance delivery

units (MDUs) that are responsible for maintenance activities within Network Rail’s
routes. In this paper, we applied econometric techniques to a two-year data (2014-15
and 2015-16) of the sort that could be used to benchmark Network Rail’s 37 MDUs
(that existed at the time of analysis) in terms of their spending efficiency as compared
to the modelled frontier efficiency. The analysis drew from two strands of previously
conducted analyses by Network Rail (2010, 2011, and 2012) and by the Institute for
Transport Studies-University of Leeds (Wheat and Smith, 2008).

36. This is the first time that ORR has conducted such an analysis at such a
geographically disaggregated level. This analysis constitutes an important step
towards increased regulation of Network Rail at a route level. It also constitutes a
basis for future analysis as it has identified data issues that ORR and Network Rail
will need to handle to ensure better quality data is available for future analysis.

37. Given the small size of the dataset as well as our inability to obtain data on some
potential cost drivers (and therefore our inability to control for them in our regression),
we adopted a simple but widely used methodology i.e. the corrected ordinary least
squares (COLS) methodology to estimate the relationship between total maintenance
cost and its drivers, and then we estimated the efficiency scores for each MDU as
compared to the modelled frontier efficiency

38. Our model suggests economies of scale and economies of densities. This means
that increasing network size and traffic density increases the cost less than
proportionally. If the results of this model are accurate, then MDUs that maintain
larger and more densely used networks have a cost advantage. Our model also
suggests that it is cheaper to maintain infrastructure with multiple, rather than single,
tracks.

39. Our model produced a wide range of notional efficiency scores which fluctuate year
on year. Everything else being equal, our model estimates that the difference
between modelled frontier efficiency and MDUs’ notional efficiency scores ranges
from 3% to 37% but on average, it is modelled to be 16%. These results are
comparable to the results of our route data analysis.

40. We conducted various statistical tests to check the validity of our model specification.
None of these results suggested that our model was invalid. We believe that this
model is robust from an econometric perspective.

41. However, this analysis faced some significant data quantity and quality constraints.
This means that our modelled efficiency frontier may not represent the exact MDUs
cost structure. Consequently, we do not think these results are robust enough to be
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used alone to decide on MDUs’ (or Network Rail’s) efficiency target for CP6. 
However, they are robust enough to be used alongside and to sense-check evidence 
from other analyses (such as bottom-up benchmarking) which inform that decision.  

42. To ensure that better quality data is available for future analysis we recommend that
the data we need for econometric top-down benchmarking of MDUs be included in
the ORR-Network Rail data protocol for CP6 and beyond.
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